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Abstract. The aim of this paper is to suggest branch and bound schemes, based on a
relaxation of the objective function, to solve nonconvex quadratic programs over a com-
pact polyhedral feasible region. The various schemes are based on different d.c. decompo-
sition methods applied to the quadratic objective function. To improve the tightness of the
relaxations, we also suggest solving the relaxed problems with an algorithm based on the so
called “optimal level solutions” parametrical approach.
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1. Introduction

The aim of this paper is to propose various solution methods for quadratic
indefinite programs and ways they can be solved by means of branch and
bound algorithms based on the partition of the feasible region and the
relaxation of the objective function.

These problems (see for example [2–4,6,12–17,22,24,25]) have been
approached in the literature in several ways and in [1,7,11,18,23] they were
solved with solution algorithms based on convex relaxations obtained by
means of a transformation of the objective function in a d.c. form.

In this paper, we study various d.c. decompositions of the objective func-
tion f (x) = 1

2xT Ax + cT x, which are different from the ones proposed in
[1,7,18,23]. For these decompositions we suggest both convex and noncon-
vex relaxations.

In Section 2 we first study how to decompose the matrix A in the
form A = Q − ∑n−v+(A)

i=1 did
T
i , where Q ∈ �n×n is positive definite, di ∈
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314 RICCARDO CAMBINI AND CLAUDIO SODINI

�n ∀i and ν+(A) is the number of positive eigenvalues of A. In order to
decrease numerical errors and computational complexity, such a decom-
position is obtained without the use of eigenvalues and eigenvectors. By
using this decomposition the following d.c. form of the objective function
is obtained:

f (x)= 1
2xT Qx − 1

2

n−ν+(A)∑

i=1

(dT
i x)2 + cT x

and a relaxation is given linearizing the quadratic form
∑n−ν+(A)

i=1 (dT
i x)2.

This allows us to suggest a branch and bound scheme based on a parti-
tion of the current feasible region. Finally, it is shown that the algorithm
proposed in [5] allows us to solve, in the branch and bound scheme, sub-
problems that have a tighter nonconvex relaxation.

In Section 3 the particular case of box constrained problems is stud-
ied. A branch and bound scheme based on the decomposition of matrix
A in the form A = Q − ddT − diag(w), where Q is positive definite and
diag(w) is a positive semidefinite diagonal matrix with diagonal elements
given by the components of vector w, is given by means of the linearization
of the quadratic form xT diag(w)x. Some decomposition procedures are
proposed and compared with respect to the tightness of the corresponding
relaxations.

2. Generic Compact Polyhedral Region

Let us consider the following definition.

DEFINITION 2.1. We define the following quadratic program:

P :

{
min f (x)= 1

2xT Ax + cT x

x ∈X ={x ∈�n :Bx �b},

where X is a compact polyhedron, B ∈�m×n, b∈�m, c∈�n and A∈�n×n is
any symmetric matrix. From now on we will denote also with (ν+, ν−, ν0)

the inertia of A, where ν+(A)+ν−(A)+ν0(A)=n. In other words, ν+(A) is
the number of positive eigenvalues of A,ν−(A) is the number of negative
ones, ν0(A) is the algebraic multiplicity of the zero eigenvalue.

If A is positive semidefinite then f is convex and hence problem P can be
solved by means of any of the known algorithms for convex quadratic pro-
grams.

The aim of this section is to propose a branch and bound scheme to
solve problem P when A is not positive definite.
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2.1. preliminaries

It is well known that the decomposition method of Lagrange (see [10]),
based on the “Law of Inertia”1, provides for any symmetric matrix A

a decomposition of the kind A = Q − ∑h
i=1 did

T
i , where Q is positive

semidefinite with rank(Q) = ν+(A), h = ν−(A) and d1, . . . , dh are linearly
independent.

Such a procedure can be slightly modified as described in procedure
ModLagrange (A,Q,k,d1, . . . ,dk), in order to obtain a decomposition of
the kind

A=Q−
k∑

i=1

did
T
i ,

where Q is positive definite, k = ν−(A) + ν0(A) = n − ν+(A) and d1, . . . , dk

are linearly independent. Note that in this procedure we denote with
row[T, r] the r-th row of matrix T .

Procedure ModLagrange(inputs : A; outputs: Q, k, d1, . . . ,dk)

T:=A; Q:=0; k:=0; used:= [1, 1, . . . , 1, 1]∈�n;
while T �=0d0

if T[i, i]=0∀i ∈{1, . . . , n}
then select r ∈{1, . . . , n} such that row[T,r] �=0;

Q[r,r]:=Q[r,r]+1; T[r,r] :=−1;
else select r ∈{1, . . . , n} such that T[r, r] �=0;
end if;
used[r]:=0; v:=row[T,r]; α :=T[r,r]; T :=T− 1

α
vvT ; Q:=Q+ 1

|α|vvT ;

ifα <0 then k :=k +1; dk :=
√

−2
α

v end if;
end do;
for i from 1 to n do

if used[i]=1 then Q[i,i]:=Q[i,i]+1; k:=k+1; dk :=0; dk[i] :=1; end if;
end do;
end proc.

1(The Law of Inertia for symmetric matrices [10].) Let A∈�n×n,A �=0, be a symmetric matrix
and let u1 . . . , ur ∈�n \ {0} be 1 � r � n linearly independent vectors such that

A=
r∑

i=1

αiuiu
T
i ,

where αi ∈{−1,1}∀i =1, . . . , r. Then the number of positive and the number of negative coefficients
αi are independent of the chosen set of linearly independent vectors u1, . . . , ur .
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REMARK 2.1. The ModLagrange (A,Q,k,d1, . . . ,dk) procedure starts ini-
tializing a temporary matrix T :=A, a null matrix Q, a zero index k and a
flags vector used := [1,1, . . . ,1,1].

The aim of the procedure is to modify matrices T and Q and to create
linearly independent vectors d1, . . . , dk so that, at every iterative step, it is
A=Q+T −∑k

i=1 did
T
i , with Q positive semidefinite.

In the various iterations of the while cycle a row of T , say the r-th row,
is selected (used [r] :=0 and v := row[T , r]); then, in the light of the method
of Lagrange [10], matrices T and Q are updated so that the r-th row and
column of T become equal to the null vector and Q increases its rank by 1
(T :=T − 1

T [r,r]vvT and Q :=Q+ 1
|T [r,r]|vvT ); finally if T [r, r]<0 a new vector

dk is created (dk :=
√

−2
T [r,r]v). It is worth observing that the case of a non-

zero matrix T having all the diagonal elements equal to zero is managed in
a different way with respect to the method of Lagrange [10].

Notice also that, for the Law of Inertia, the while cycle is iterated exactly
ν−(A)+ ν+(A) times until T becomes the null matrix. A decomposition of
the kind A = Q − ∑ν−(A)

i=1 did
T
i , where Q is positive semidefinite with rank

equal to ν−(A)+ ν+(A) and the vectors d1, . . . , dν−(A) are linearly indepen-
dent, is then provided.

If ν0(A) = 0 then Q is positive definite and the procedure stops; other-
wise, by scanning the flags vector used, ν0(A) diagonal elements of Q are
updated in order to make it positive definite (Q[i, i] :=Q[i, i]+1) and ν0(A)

more vectors dk are created (dk :=0 and dk[i] :=1).
As a consequence, the output of the procedure is a decomposition of the

kind A=Q−∑k
i=1 did

T
i , with k = ν−(A)+ ν0(A) and Q is nonsingular and

positive definite.

EXAMPLE 2.1. Applying procedure ModLagrange (A,Q,k,d1, . . . ,dk) to

A=
[

0 2
2 0

]

we have:
• T:=A; Q:=0; k:=0; used:=[1,1];
• T[i,i]=0, i=1,2, hence:

r:=1; used[1]:=0; Q[1,1]:=1; T[1,1]:=−1; v:=[−1,2]; α :=−1;

T :=
[−1 2

2 0

]

+
[

1 −2
−2 4

]

=
[

0 0
0 4

]

Q :=
[

1 0
0 0

]

+
[

1 −2
−2 4

]

=
[

2 −2
−2 4

]

• α <0 hence: k:=1; dT
1 :=√

2[−1,2]
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• T[2,2] �=0 hence: r:=2; used[2]:=0; v:=[0,4]; α :=4;

T :=
[

0 0
0 4

]

− 1
4

[
0 0
0 16

]

=
[

0 0
0 0

]

Q :=
[

2 −2
−2 4

]

+ 1
4

[
0 0
0 16

]

=
[

2 −2
−2 8

]

• since T=0 and used=0 we finally have:

A=Q−d1d
T
1 =

[
2 −2

−2 8

]

−
[

2 −4
−4 8

]

The previous procedure can be applied to matrix A of function f , so
that function f can then be rewritten as:

f (x)= 1
2
xT Qx − 1

2

n−v+(A)∑

i=1

(dT
i x)2 + cT x

Note finally that, by means of 2n − 2ν+(A) linear programs we can also
compute the following values:

l̄i :=min
x∈X

dT
i x, ūi :=max

x∈X
dT

i x, i =1, . . . , n−ν+(A) (2.1)

so that:

l̄i � dT
i x � ūi ∀x ∈X, ∀i =1, . . . , n−v+(A).

REMARK 2.2. The problem of decomposing a symmetric matrix A∈�n×n

as the difference of two positive semidefinite matrices have been generally
approached in the literature using the diagonal form of A (see for exam-
ple [1,7,18,23]), so that it is necessary to compute the n eigenvectors of A

(hence to resolve n homogeneous linear systems). All the decompositions
proposed in this paper are computed directly by means of at most n “piv-
oting-like” operations and without the need of computing eigenvalues and
eigenvectors. Clearly, this chosen approach results to be less “expensive”,
with respect to both time-computing and numerical errors, than the one
based on the diagonal form of A.

2.2. relaxations

In the branch and bound algorithm we propose to partition the feasible region
using the hyperplanes dT

i x, i =1, . . . , n−ν+(A), whose number equals the num-
ber of nonpositive eigenvalues of the original quadratic form. In particular, in
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the current step of the branch and bound algorithm the considered partition of
the feasible region is of the kind X ∩Y where:

Ȳ ={x ∈�n : l̄i �dT
i x � ūi∀i =1, . . . , n−ν+(A)},

Y ={x ∈�n : li �dT
i x � ūi∀i =1, . . . , n−ν+(A)}⊆ Ȳ .

Obviously, X ∩ Ȳ = X holds. As a consequence, function f can be
relaxed over the current partition just by linearizing the concave form
−∑n−ν+(A)

i=1 (dT
i x)2 over Y , and thus we obtain the function:

fY (x)= 1
2
xT Qx − 1

2

n−ν+(A)∑

i=1

[dT
i x(li +ui)− liui ]+ cT x,

= 1
2
xT Qx + c̃T x + c̃0,

with:

c̃= c− 1
2

n−ν+(A)∑

i=1

di(li +ui) and c̃0 = 1
2

n−ν+(A)∑

i=1

liui .

In particular, we have:

f (x)−fY (x)= 1
2

n−ν+(A)∑

i=1

(ui −dT
i x)(dT

i x − li),

=−1
8

n−ν+(A)∑

i=1

(2dT
i x − (li +ui))

2 + 1
8

n−ν+(A)∑

i=1

(ui − li)
2.

Hence, the maximum error due to the linearization of the concave form
−∑n−ν+(A)

i=1 (dT
i x)2 over the current partitions Y is:

Err(fY )= 1
8

n−ν+(A)∑

i=1

(ui − li)
2. (2.2)

In other words, for all x ∈X ∩Y we have:

0�f (x)−fY (x)� Err (fY ).

Notice that the maximum error Err(fY ) is attained at feasible points x such
that dT

i x = li+ui

2 ∀i = 1, . . . , n− ν+(A) (these points exist since vectors di are
linearly independent).

REMARK 2.3. It is worth comparing the proposed approach with those
reported in the literature [1,7,18,23]. First of all, in these papers both



DECOMPOSITION METHODS FOR SOLVING NONCONVEX QUADRATIC PROGRAMS 319

the objective function and the feasible region are usually transformed by
means of a change of variables based on the eigenvectors of A, while in
our approach just the objective function is decomposed leaving both the
variables and the feasible region untouched. This implies that the original
structure of the feasible region is maintained and that all numerical errors
due to the computing of the eigenvectors are avoided.

Finally, note that our approach refers to a general compact feasible region
(not necessarily a box constrained one) and that the relaxed problems are strictly
convex ones (generally more easy to be solved than convex ones).

2.3. branch and bound

The results of the previous subsection allow us to relax problem P over the
current partitions Y with the following problem:

PY :

{
min fY (x)

x ∈X ∩Y.

Note that PY is a strictly convex quadratic problem, hence it can be solved
with any of the algorithms known in the literature.

We are now able to suggest a branch and bound scheme based on the pro-
posed relaxation. The main procedure “Solve1()” just initialize the algorithm,
call the recursive subprocedure “Explore1()” and then provides the optimal
solution. As usual in the branch and bound schemes, the tolerance accepted
for the maximum error Err(fY ) has to be fixed a priori. In the procedure this
is done by means of a positive value ε which provides the desired precision.
In other words, in order to guarantee the finite convergence of the branch
and bound scheme, the partitioning of Y is stopped whenever the maximum
error Err(fY ) is lower than or equal to the chosen precision ε >0.

Procedure Solve1(P )

determine a decomposition A=Q−
∑n−ν+(A)

i=1
did

T
i ;

determine l̄i and ūi∀i =1, . . . , n−ν+(A);
fix the positive value ε;UB :=+∞;
Explore1(Ȳ );
x∗ is the provided solution and UB is its value;

end proc.

The core of the algorithm is the recursive procedure “Explore1()” which is
described below. This procedure is based on a generalization of the so called
“rectangular partitioning method” (see [9,25]). Note that we denote with σ the
separating value used in the bipartition of the current feasible region.
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Procedure Explore1(Y )

if X ∩Y �=∅ then

let x̄ be the optimal solution of PY ;
if f (x̄)<UB then UB :=f (x̄);x∗ := x̄ end if;
if fY (x̄)<UB and Err(fY )>ε then

let i ∈{1, . . . , n−ν+(A)} be such that:

ui − li = max
j∈{1,...,n−ν+(A)},lj <dT

j x̄<uj

{uj − lj } (2.3)

determine σ ∈ (li, ui);
define Y1 ={x ∈Y : li �dT

i x �σ };
define Y2 ={x ∈Y :σ �dT

i x �ui};
Explore1(Y1);
Explore1(Y2);

end if;
end if;

end proc.

Procedure “Explore1(Y )” first looks for the optimal solution x̄ of the cor-
responding relaxed problem PY ; if x̄ allows to decrease the upper bound
UB it is chosen as the new incumbent optimal solution. Then the value of
the relaxed function fY (x̄) is analyzed; if it is not lower than UB, that is:

f (x̄)� min
x∈X∩Y

f (x)� min
x∈X∩Y

fY (x)=fY (x̄)�UB,

then it is impossible to improve the incumbent optimal solution by explor-
ing Y furthermore. In the case:

fY (x̄)<UB �f (x̄),

then there exists at least one index j ∈ {1, . . . , n − ν+(A)} such that lj <

dT
j x̄ < uj (if such an index does not exist, that is (uj − dT

j x)(dT
j x − lj ) = 0

∀j ∈ {1, . . . , n− ν+(A)}, it is fY (x̄)=f (x̄)), hence it is possible to partition
the set Y into two subsets Y1 and Y2 as shown before. The incumbent opti-
mal solution can then be improved using the relaxed functions fY1 and fY2 ,
defined over the sets Y1 and Y2, respectively, since these functions provide a
better approximation of f than fY . We now will show how the separating
value σ can be chosen:

• σ = dT
i x̄: in this case the branch and bound scheme follows the lines

proposed in [9], where the finite convergence has been fully proved; it
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is worth noticing also that in this case we always have X ∩Y1 �=∅ and
X ∩Y2 �=∅ since x̄ ∈Y1 ∩Y2;

• σ = 1
2(li + ui): in this case the maximum errors Err(fY1) and Err(fY2)

in the subsequent subproblems are reduced by 3
4 (ui − li)

2 with respect
to Err(fY ); the finite convergence then follows trivially since a positive
precision value ε has been fixed and the index i is chosen as described
in (2.3); note that in this case it might happen that X ∩ Y1 = ∅ or
X ∩Y2 =∅.

Finally, note that in the case condition Err(fY )�ε is never used to stop the
branch progress, that is to say that the branching is always stopped since
fY (x̄)�UB or X∩Y =∅, then the provided solution is actually the optimal
solution of the problem.

EXAMPLE 2.2. Let us solve with the described approach the next problem:

⎧
⎪⎨

⎪⎩

min f (x1, x2)= 1
2 [x1, x2]

[
0 2
2 0

][
x1

x2

]

(x1, x2)∈X ={(x1, x2)∈�2 :−1�x1 �3, −2�x2 �3}

• The matrix in the quadratic form of the objective function is
decomposed as described in Example 2.1, so that

f (x1, x2)= 1
2

[x1, x2]
[

2 −2
−2 8

][
x1

x2

]

− (−x1 +2x2)
2

• we get

l̄1 = min
(x1,x2)∈X

(−x1 +2x2)=−7, ū1 = max
(x1,x2)∈X

(−x1 +2x2)=7

attained in (x1, x2)= (3,−2) and (x1, x2)= (−1,3), respectively

• ε = 1
10 ;UB :=+∞; Ȳ ={(x1, x2)∈�2 :−7�−x1 +2x2 �7};

(PȲ ) fȲ (x1, x2) = x2
1 + 4x2

2 − 2x1x2 − 49; the optimal solution is (0,0);
UB := f (0,0) = 0;x∗ := (0,0); since fȲ (0,0) = −49 < UB and
Err(fȲ ) = 49

2 > ε we get Y1 = {(x1, x2) ∈ Ȳ : −7 � −x1 + 2x2 � 0} and
Y2 ={(x1, x2)∈ Ȳ : 0�−x1 +2x2 �7}

(PY1) fY1(x1, x2) = x2
1 + 4x2

2 − 2x1x2 − 7x1 + 14x2; the optimal solution
is ( 7

3 ,− 7
6);UB := f ( 7

3 ,− 7
6) = − 49

9 ;x∗ := ( 7
3 ,− 7

6); since fY1(
7
3 ,− 7

6)

= − 49
3 < UB and Err(fY1) = 49

8 > ε we get Y1,1 = {(x1, x2) ∈ Y1 : −7
�−x1 +2x2 �− 14

3 } and Y1,2 ={(x1, x2)∈Y1 :− 14
3 �−x1 +2x2 �0}
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(PY1,1) fY1,1(x1, x2)=x2
1 +4x2

2 −2x1x2 − 35
3 x1 + 70

3 x2 + 98
3 ; the optimal solution

is (3,−2); UB := f (3,−2) = −12;x∗ := (3,−2);fY1,1(3,−2) = −12 �
UB

(PY1,2) fY1,2(x1, x2) = x2
1 + 4x2

2 − 2x1x2 + 14
3 x1 − 28

3 x2; the optimal solution is
(0, 0); f (0,0)=0;fY1,2(0,0)=0>UB

(PY2) fY2(x1, x2) = x2
1 + 4x2

2 − 2x1x2 + 7x1 − 14x2; the optimal solu-
tion is (−1, 3

2);f (−1, 3
2) = −3; since fY2(−1, 3

2) = −15 < UB and
Err(fY2) = 49

8 > ε we get Y2,1 = {(x1, x2) ∈ Y2 : 0 � −x1 + 2x2 � 4} and
Y2,2 ={(x1, x2)∈Y2 : 4�−x1 +2x2 �7}

(PY2,1) fY2,1(x1, x2) = x2
1 + 4x2

2 − 2x1x2 + 4x1 − 8x2; the optimal solution is
(−1, 3

4 );f (−1, 3
4 )=− 3

2 ;fY2,1

(−1, 3
4

)=− 21
4 >UB

(PY2,2) fY2,2(x1, x2) = x2
1 + 4x2

2 − 2x1x2 + 11x1 − 22x2 + 28; the optimal solu-
tion is (−1, 5

2);f (−1, 5
2)=−5;fY2,2(−1, 5

2)=−7>UB

• the provided solution is x∗ := (3,−2), which is also the optimal
solution of the problem since the condition Err(fY ) � ε has never
been used to stop the branch progress. It is finally f (3,−2)=−12.

2.4. further enhancements

In [5] a finite algorithm based on the so called “optimal level solutions”
approach [5,8] has been proposed to solve problems of the kind

{
min g(x)= 1

2xT Qx − 1
2(dT x)2 + cT x

x ∈X ={x ∈�n :Bx �b}, (2.4)

where X is a compact polyhedron, B ∈�m×n, b∈�m, c, d ∈�n and Q∈�n×n

is a positive definite symmetric matrix.
This algorithm can be used to improve the tightness of the relaxations used

in the branch and bound scheme described in the previous subsections.
Let us first recall that in the previous subsections function f has been

decomposed as:

f (x)= 1
2
xT Qx − 1

2

k∑

i=1

(dT
i x)2 + cT x where k =n−ν+(A),

with a maximum error, due to the initial relaxation, given by:

Err(fȲ )= 1
8

k∑

i=1

(ūi − l̄i )
2.
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In order to decrease as much as possible the error caused by the relax-
ations, let us denote with j ∈{1, . . . , k} an index such that:

ūj − l̄j = max
i=1,...,k

{ūi − l̄i}, (2.5)

where ūi and l̄i are the bounds defined in (2.1). The partition of the feasi-
ble region used in the current step of the branch and bound algorithm is
now of the kind X ∩Yj where:

Y j ={x ∈�n : l̄i �dT
i x � ūi ∀i =1, . . . , k, i �= j},

Yj ={x ∈�n : li �dT
i x �ui ∀i =1, . . . , k, i �= j}⊆Y j .

Function f can then be relaxed over the current partition just linearizing
the concave form −∑k

i=1,i �=j (d
T
i x)2 over Yj with the function:

gYj
(x)= 1

2
xT Qx − 1

2
(dT

j x)2 − 1
2

k∑

i=1,i �=j

[dT
i x(li +ui)− liui ]+ cT x,

= 1
2
xT Qx − 1

2
(dT

j x)2 + c̄T x + c̄0,

where:

c̄= c− 1
2

k∑

i=1,i �=j

di(li +ui) and c̄0 = 1
2

k∑

i=1,i �=j

liui.

Note that function gYj
is of the same kind of the objective function of

problem (2.4). Then it follows that:

f (x)−gYj
(x)=− 1

8

k∑

i=1,i �=j

(2dT
i x − (li +ui))

2 + 1
8

k∑

i=1,i �=j

(ui − li)
2.

Hence, the maximum error in linearizing the concave form −∑k
i=1,i �=j (d

T
i x)2

over the current partition Yj is:

Err(gYj
)= 1

8

k∑

i=1,i �=j

(ui − li)
2 =Err(fYj

)− 1
8
(ūj − l̄i )

2. (2.6)

In other words, for all x ∈X ∩Yj we have:

0�f (x)−gYj
(x)�Err(gYj

)<Err(fYj
),

hence gYj
is more tight than fYj

.



324 RICCARDO CAMBINI AND CLAUDIO SODINI

Problem P can then be relaxed over the current partition Yj with the
problem:

GYj
:

{
min gYj

(x)

x ∈X ∩Yj ,

which can be solved by means of the algorithm proposed in [5]. Note
that this relaxation is tighter than PYj

but, from a computational point of
view, GYj

(which is not a positive definite quadratic program) is more time-
expensive to be solved than PYj

(which is a strictly convex program). Obvi-
ously, if ν+(A)=n−1, that is to say that A has one nonpositive eigenvalue,
the problem can be solved directly by the algorithm proposed in [5], with-
out any branch and bound steps.

The branch and bound scheme based on the relaxation GYj
is analogous to

the one described in the previous section and its finite convergence follows on
the same lines described in Section 2.3. The main procedure becomes:

Procedure Solve2(P )

determine a decomposition A=Q−
∑n−ν+(A)

i=1
did

T
i ;

determine l̄i and ūi∀i =1, . . . , n−ν+(A);
determine j as in (2.5);
fix the positive value ε;UB :=+∞;
Explore2(Y j );
x∗ is the provided solution and UB is its value;

end proc.

while the recursive procedure “Explore2()” is:

Procedure Explore2(Yj )

if X ∩Yj �=∅ then

let x̄ be the optimal solution of GYj
;

if f (x̄)<UB then UB :=f (x̄);x∗ := x̄ end if;
if gYj

(x̄)<UB and Err(gYj
)>ε then

let i ∈{1, . . . , n−ν+(A), i �= j} be such that:
ui − li = max

j∈{1,...,n−ν+(A), i �=j}, lj <dT
j x̄<uj

{uj − lj } (2.7)

determine σ ∈ (li, ui);
define Y 1

j ={x ∈Yj : li �dT
i x �σ };

define Y 2
j ={x ∈Yj :σ �dT

i x �ui};
Explore2(Y

1
j );
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Explore2(Y
2
j );

end if;
end if;

end proc.

In “Explore2()” the value σ can be chosen as described in Section 2.3.

3. Box Constrained Case

Let us consider now the following particular case of problem P :

PB :

{
min f (x)= 1

2xT Ax + cT x

x ∈XB ={x ∈�n : l̃i �xi � ũi , i =1, . . . , n},
that is the case, where P is a box constrained problem.

Obviously, problem PB can be solved as described in the previous sec-
tion; recall that those approaches require that 2n−2ν+(A) linear programs
are solved in the initialization of the branch and bound.

In this section, we aim to show that different decompositions of matrix A

allow us to avoid the computing of the solutions of such linear programs.

3.1. relaxations and branch and bound

Our approach is based on the decomposition of matrix A in the following form2:

A=Q−ddT −diag(w), (3.1)

where Q ∈ �n×n is symmetric and positive definite, d,w ∈ �n,w � 0 and
diag (w) is the positive semidefinite diagonal matrix with diagonal elements
given by the components of vector w. Note that the vector d can be equal
to the null vector.

Such a decomposition allows us to rewrite function f as follows:

f (x)= 1
2
xT Qx − 1

2
(dT x)2 − 1

2

n∑

i=1

wix
2
i + cT x.

The feasible region can now be partitioned using the variables xi, i =
1, . . . , n, such that wi > 0. In particular, in the current step of the branch
and bound algorithm the considered partition of the feasible region is of
the kind XB ∩W where:

2Note that in [11,18] a decomposition of this kind (with d =0 and diag (w)=kIn, k >0 large
enough) was studied. Another decomposition of this kind with d =0, based on diagonal dominance,
has been proposed in [18].
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W ={x ∈�n : l̃i �xi � ũi∀i such that wi >0} ⊇XB,

W ={x ∈�n : li �xi �ui ∀i such that wi >0}⊆W.

As a consequence, problem PB can be relaxed over the current partition
just by linearizing the concave form − 1

2

∑n
i=1 wix

2
i over W , and thus we

obtain the problem:

PBW :

{
min fW(x)

x ∈XB ∩W,

where:

fW(x)= 1
2
xT Qx − 1

2
(dT x)2 − 1

2

n∑

i=1

wi [xi(li +ui)− liui ]+ cT x,

= 1
2
xT Qx − 1

2
(dT x)2 + c̄T x + c̄0,

with:

c̄0 = 1
2

n∑

i=1

wiliui and c̄=(c̄i) where c̄i =ci − 1
2
wi(li +ui) ∀i =1,...,n.

Note that:

• in the case of d =0 problem PBW is a strictly convex quadratic prob-
lem and problem PB can be solved with a branch and bound scheme
analogous to the one described in Subsection 2.3,

• in the case of d �= 0 problem PBW is of the kind (2.4) and can be
solved by means of the algorithm proposed in [5], hence problem PB

can be approached with a branch and bound scheme analogous to the
one described in Subsection 2.4.

Since:

f (x)−fW(x)= 1
2

n∑

i=1

wi(ui −xi)(xi − li),

=−1
8

n∑

i=1

wi(2xi − (li +ui))
2 + 1

8

n∑

i=1

wi(ui − li)
2,

the maximum error done linearizing the concave form − 1
2

∑n
i=1 wix

2
i over

the current partition W is:

Err(fW)= 1
8

n∑

i=1

wi(ui − li)
2, (3.2)
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which is attained at points x̃ ∈XB ∩W such that:

x̃i = 1
2
(li +ui) ∀i ∈{1, . . . , n} such that wi >0.

In particular, for all x ∈XB ∩W we have:

0�f (x)−fW(x)�Err(fW).

It is now clear that in order to decrease the maximum error Err(fW) in the
various branch and bound steps we have to use decompositions of the kind
(3.1) with a vector w having many zero components and positive ones with
a small value.

The branch and bound scheme which solves problem PB is analogous to
the ones described in the previous sections and its finite convergence fol-
lows on the same lines described in Section 2.3. The main procedure is:

Procedure Solve3(PB)

determine a decomposition A=Q−ddT −diag(w);
fix the positive value ε;UB :=+∞;
Explore3(W);
x∗ is the provided solution and UB is its value;

end proc.

The core of the algorithm is in the following recursive procedure
“Explore3()”:

Procedure Explore3(W)

if X ∩W �=∅ then

Let x̄ be the optimal solution of PBW
3;

if f (x̄)<UB then UB :=f (x̄);x∗ := x̄ end if;
if fW(x̄)<UB and Err(fW)>ε then

let i ∈{1, . . . , n} be such that:

wi(ui − li)
2 = max

j∈{1,...,n}, wj >0, lj <x̄j <uj

{wj(uj − lj )
2} (3.3)

determine σ ∈ (li, ui);
define W1 ={x ∈W : li �xi �σ };

3If d =0 the optimal solution x̄ of PBW is determined by means of any of the known algo-
rithm for positive definite quadratic problems; in the case d �=0 it is determined by means of the
algorithm proposed in [5].
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define W2 ={x ∈W :σ �xi �ui};
Explore3(W1);
Explore3(W2);

end if ;
end if ;

end proc.

Note that since fW(x̄)<UB there exists at least one index i ∈{1, . . . , n} sat-
isfying (3.3). In fact, if wj(uj − x̄j )(x̄j − lj )=0 ∀j ∈{1, . . . , n} then fW(x̄)=
f (x̄) � UB which is a contradiction. Note finally that, in
“Explore3()”, the value σ can be chosen as follows:

σ = x̄i or σ = li +ui

2
.

3.2. decomposition procedures

Let us now provide some procedures which decompose matrix A in the form:

A=Q−ddT −diag(w),

as described in the previous subsection. Note that, in order to obtain relax-
ations as tight as possible, the proposed procedures are aimed to determine
a vector w with as few positive components as possible.

The first procedure, that is Minor(A,Q,w), provides a decomposition of
the kind (3.1) with d = 0 and is based on the well-known characteriza-
tion of positive definite matrices based on the positiveness of all their NW
minors. In this procedure the following notations are used:

• Qk is the k ×k NW submatrix of Q,
• Qk\i is the k×k NW submatrix of Q without its i-th row and column.

Procedure Minor(inputs : A; outputs : Q,w)

Q:=A; w:=0;

if Q[1,1]�0 then w[1]:=1−Q[1,1]; Q[1,1]:=1 end if ;
for k from 2 to n do

if det(Qk)�0

then if Q[k,k]�0 then h:=k; den:=det(Qk−1);
else found:=f alse;

for i f rom 1 to k−1 do

if not(found) and w[i]> 0 and det(Qk\i)>0

then h:=i; den:=det(Qk\i); found:= true;
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end if ;
end do;
if not(found) then h:=k; den:=det(Qk−1)end if ;

end if ;
val :=1− det(Qk)

den
; w[h]:=w[h]+val; Q[h,h]:=Q[h,h]+val;

end if ;
end do;
end proc.

In procedure Minor(A,Q,w) the “for” cycle is repeated n− 1 times. At the
k-th iteration the k-th NW minor of Q is checked and, if the case, forced
to be positive by updating a diagonal element of Q; the decomposition is
maintained by increasing properly an element of w. Note that, in order
to obtain a vector w with as few positive components as possible, if the
k-th NW minor of Q is nonpositive the procedure Minor(A,Q,w) first try
to make it positive by increasing an already positive component of w, while
a new positive component of w is created just if this is not possible.

The limit of this approach is that the diagonal elements are analyzed
in a fixed order, that is from the first to the last one. Better results may
be obtained with algorithms which consider the diagonal elements not in
a fixed order, such as the procedure Decomp1(A,Q,w) which provides a
decomposition of the kind (3.1) with d = 0 and which is based on pivot-
ing operations similar to the ones used in procedure ModLagrange.

Procedure Decomp1(inputs : A;outputs :Q,w)

T:=A; Q:=0; w:=0; used:= [1,1,...,1,1]∈�n;
while T �=0 do

if T[i,i]�0∀i ∈{1,...,n}
then select r ∈{1,... ,n} such that row[T,r] �=0;

w[r] :=1−T[r,r]; T[r,r]:=1;

else select r ∈{1,...,n} such that T [r,r]>0 and T − 1
T [r,r]

vvT has

as much positive diagonal elements as possible, where v=row[T,r];

end if ;
v:=row[T,r];α :=T[r,r]; T:=T− 1

α
vvT ; Q:=Q+ 1

α
vvT ;used [r]:=0;

end do;
w:=w+used; Q:=Q+diag(used);

end proc.
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The previous procedure differs from ModLagrange the way where T [r, r]�0
is approached; in facts, in procedure Decomp1 when T [r, r] � 0 the r-th
component of w is updated and no dk vector is created.

Note that in order to obtain a vector w with as few positive components
as possible, the procedure Decomp1(A,Q,w) first uses the positive diagonal
elements of the temporary matrix T , then it analyzes the nonpositive ones.

In the next example the procedures Minor(A,Q,w) and Decomp1(A,Q,w)
are applied to a given matrix A, showing that Decomp1(A,Q,w) may pro-
vide a decomposition with a matrix diag(w) having smaller rank.

EXAMPLE 3.1. Let us apply procedures Minor(A,Q,w) and Decomp1
(A,Q,w) to the next matrix:

A=
⎡

⎣
1 2 3
2 1 0
3 0 1

⎤

⎦

We obtain the following decompositions:

minor :

⎡

⎣
1 2 3
2 1 0
3 0 1

⎤

⎦=
⎡

⎣
1 2 3
2 5 0
3 0 46

⎤

⎦−
⎡

⎣
0 0 0
0 4 0
0 0 45

⎤

⎦

decomp1 :

⎡

⎣
1 2 3
2 1 0
3 0 1

⎤

⎦=
⎡

⎣
14 2 3
2 1 0
3 0 1

⎤

⎦−
⎡

⎣
13 0 0
0 0 0
0 0 0

⎤

⎦

hence, in this case, Decomp1(A,Q,w) provides a vector w with a number of
positive components smaller than Minor(A,Q,w).

A vector w with a smaller number of positive components can be
obtained with the procedure Decomp2(A,Q,d,w) which represents an
improvement of the procedure Decomp1(A,Q,w). Note that this procedure
provides a vector d which may be different from zero.

Procedure Decomp2(inputs :A; outputs :Q, d, w)

T :=A;Q :=0;w :=0;used:= [1,1,...,1,1]∈�n;d:=0;found:= false;
while T �=0 do

if T[i,i] � 0∀i ∈{1,...,n}
then if found

then select r ∈{1,...,n} such that row [T,r] �=0;
w[r] :=1−T[r,r]; T[r,r]:=1;

else select r ∈{1,...,n} such that v=row[T,r] �=0 and

T − 1
α

vvT has as much positive diagonal elements



DECOMPOSITION METHODS FOR SOLVING NONCONVEX QUADRATIC PROGRAMS 331

as possible, where α is given by:

α=
{

T [r,r] if T [r,r]<0
−1 if T [r,r]=0

;

if T[r,r]=0 then Q[r,r] :=Q[r,r]+1;T[r,r] :=−1 end if ;
end if ;

else select r ∈{1,...,n}such that T[r,r]>0 and T − 1
T [r,r]

vvT has

as much positive diagonal elements as possible, where v=row[T,r];

end if ;
v:=row[T,r]; α :=T[r,r]; T:=T− 1

α
vvT ; Q:=Q+ 1

|α|vvT ;used[r] :=0;

if α<0 then d:=
√

−2
α

v;found:= true; end if ;
end do;

w:=w+used; Q:=Q+diag(used);

end proc.

Procedure Decomp2 (A,Q,d,w) represents a hybrid of the two procedures
ModLagrange and Decomp1; in fact, the scheme of ModLagrange is followed
until a vector d �=0 is created, then the lines of Decomp1 are used.

Finally, it is worth studying how many positive components the vector w

in (3.1) may have.

THEOREM 3.1. Let A ∈ �n×n be a symmetric matrix and denote with
n+(A) the number of positive diagonal elements of A and with A+ the subm-
atrix of A obtained deleting the rows and the columns of A corresponding to
its nonpositive diagonal elements. Consider also the following decompositions:

A=Q1 −diag(w1),

A=Q2 −ddT −diag(w2), d �=0,

where Q1 and Q2 are positive definite, d ∈ �n, d �= 0, and w1,w2 ∈ �n,w1,

w2 � 0. Then:

i) rank(diag(w1))�n−ν+(A+)�n−min{n+(A), ν+(A)},
ii) rank(diag(w2))�ν − (A)+ν0(A)−1=n−ν+(A)−1.

Proof. i) Matrix A, by means of a permutations of its rows and columns,
can be rewritten as:
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�A�T =
[

A+ A12

A21 A22

]

.

Since Q = A + diag(w) is a positive definite matrix we have that

�Q�T =
[

A+ +diag(w11) A12

A21 A22 +diag(w22)

]

is positive definite too. As a consequence A+ +diag (w11) is positive defi-
nite so that, for the “Law of Inertia”, w11 has at least n+(A)−ν+(A+) pos-
itive components and it follows that the diagonal elements of A22 +diag
(w22) are all positive. Hence, the diagonal elements of A22 are nonpositive
and the n − n+(A) components of w22 are positive. The obtained condi-
tions imply that vector w has at least n−ν+(A+) positive components. The
whole result then follows noticing that both n+(A) � ν+(A+) and ν+(A) �
ν+(A+).

ii) Follows directly from the “Law of Inertia”.

The next property follows directly from procedures Decomp1(A,Q,w) and
Decomp2(A,Q,d,w) and from the “Law of Inertia”.

PROPERTY 3.1. Let A∈�n×n be a symmetric matrix which is not positive
definite (hence ν+(A)�n− 1 and let A=Q−ddT − diag(w) be a decompo-
sition obtained with procedure “decomp2”. Then:

i) d �=0,

ii) if ν−(A)�1 then rank(diag(w))=n−ν+(A)−1.

Let finally A=Q1 – diag(w1) be a decomposition obtained with proce-
dure “decomp1”; then:

iii) rank(diag(w))� rank(diag(w1))−1.

EXAMPLE 3.2. Let us apply procedures “minor”, “decomp1” and
“decomp2” to the following matrix:

A=
⎡

⎣
−2 −2 −2
−2 0 1
−2 1 0

⎤

⎦

We obtain the following decompositions:

minor :
decomp1 :

⎡

⎣
−2 −2 −2
−2 0 1
−2 1 0

⎤

⎦=
⎡

⎣
1 −2 −2

−2 5 1
−2 1 14

⎤

⎦−
⎡

⎣
3 0 0
0 5 0
0 0 14

⎤

⎦
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decomp2 :

⎡

⎣
−2 −2 −2
−2 0 1
−2 1 0

⎤

⎦=
⎡

⎣
2 2 2
2 4 5
2 5 8

⎤

⎦−
⎡

⎣
2
2
2

⎤

⎦
[

2, 2, 2
]−

⎡

⎣
0 0 0
0 0 0
0 0 4

⎤

⎦

hence, the use of vector d �= 0 in the decomposition allows us to decrease
the rank of diag(w) from 3 to 1.

3.3. solution schemes

In Subsection 3.1 we have already pointed out that the maximum error
given by the relaxed function fW over the current partition W is:

Err(fW)= 1
8

n∑

i=1

wi(ui − li)
2.

As a consequence, in order to decrease the maximum error in the various
branch and bound steps we have to use decompositions of the kind

A=Q−ddT −diag(w),

with a vector w having many zero components and few positive ones with
a small value. In this light several schemes, corresponding to different ways
of decomposing matrix A, can be suggested to solve problem PB :

(1) A is decomposed with procedure Minor(A,Q,w) and d =0.
(2) A is decomposed with procedure Decomp1(A,Q,w) and d = 0. It has

been shown in Example 3.1 that this decomposition may provide
smaller errors than the ones given by (1).

(3) A is decomposed with procedure Decomp1(A,Q,w), a positive compo-
nent of w, say wj , is chosen, the vector d =√

wjej �=0 is defined4 and
the j-th component of w is then set to zero, that is wj :=0. For exam-
ple, in order to decrease the error as much as possible we can choose
the index j ∈{1, . . . , n} such that:

wj(ũj − l̃j )
2 = max

i=1,...,n
{wi(ũi − l̃i )

2}. (3.4)

This is clearly an improvement over the scheme suggested in (2).
(4) A is decomposed with procedure Decomp2(A,Q,d,w). It has been shown

in Example 3.2 that this decomposition may provide smaller errors
than the ones given by (1), (2) and (3).

4We denote with ej the j -th column of the n×n identity matrix.
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(5) Given a predefined vector d �=0,A+ddT is decomposed with procedure
Decomp1(A+ddT ,Q,w). This scheme could be useful when the vector
d is chosen a priori, for example in order to avoid initialization prob-
lems in the solving algorithm.

REMARK 3.1. In [11,18], decompositions of the kind Q = A − diag(w)

(that is of the kind (3.1) with d = 0) are suggested with diag(w) = kIn or
with diag(w) computed using diagonal dominance properties; these decom-
positions provide a vector w having many (or all) positive components with
large values. As a consequence, the obtained relaxations are affected by a
large error Err(fW ).

The procedures Minor(A,Q,w), Decomp1(A,Q,w) and Decomp1
(A,Q,d,w) described in the previous subsection try to reduce as much as
possible the maximum error Err(fW ) by determining a vector w with many
zero components and few positive ones with a small value. In this way, we
may obtain convex relaxations tighter than the ones given in [11,18].

EXAMPLE 3.3. Let us solve the problem described in Example 2.2 with
the approach (1). With procedure Minor(A,Q,w) we get:

[
0 2
2 0

]

=
[

1 2
2 5

]

−
[

1 0
0 5

]

so that f (x1, x2)=
(

1
2x2

1 + 5
2x2

2 +2x1x2

)

− 1
2x2

1 − 5
2x2

2

• ε = 1
10 ;UB :=+∞;W =X;

(PW̄ ) fW̄ (x1, x2)=
(

1
2x2

1 + 5
2x2

2 +2x1x2

)

−x1 − 5
2x2

2 − 33
2 ; the optimal solution

is (0, 1
2);UB := f (0, 1

2)=0; x∗:=(0, 1
2); since fW̄ (0, 1

2) = − 137
8 < UB

and Err(fW̄ ) = 141
8 >∈ we get W1 = {(x1, x2) ∈ W̄ : −2 � x2 �

1
2 } and W2 ={(x1, x2)∈ W̄ : 1

2 �x2 �3}

(PW1) fW1(x1, x2) =
(

1
2x2

1 + 5
2x2

2 + 2x1x2

)

− x1 + 15
4 x2 − 4; the optimal

solution is (3,− 39
20);UB := f (3,− 39

20)=− 117
10 ; x∗ := (3,− 39

20); since
fW1(3,− 39

20) = − 1921
160 < UB and Err(fW1) = 189

32 > ε we get
W1,1 = {

(x1, x2)∈W1 :−2�x2 �− 39
20

}
and W1,2 = {(x1, x2)∈W1 :

− 39
20 �x2 � 1

2

}

(PW1,1) fW1,1(x1, x2) =
(

1
2x2

1 + 5
2x2

2 + 2x1x2

)

− x1 + 79
8 x2 + 33

4 ; the optimal

solution is (3,−2);UB :=f (3,−2)=−12;x∗ := (3,−2);fW1,1(3,−2)=
−12�UB
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(PW1,2) fW1,2(x1, x2) =
(

1
2x2

1 + 5
2x2

2 + 2x1x2

)

− x1 + 29
8 x2 + 63

16 ; the optimal

solution is (3,− 77
40);f (3,− 77

40)=− 231
20 ;fW1,2(3,− 77

40)=− 7489
640 >UB;

(PW2) fW2(x1, x2) =
(

1
2x2

1 + 5
2x2

2 + 2x1x2

)

− x1 − 35
4 x2 + 9

4 ; the optimal solu-

tion is (−1, 43
20);f (−1, 43

20)=− 43
10 ;fW2 (−1, 43

20)=− 1249
160 >UB

• the provided (optimal) solution is x∗ := (3,−2) with f (3,−2)=−12.
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